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INTRODUCTION

Hardness tests are useful and easy to perform, but they are difficult to understand. By modelling
the effect of residual stresses on the measured hardness, we hope to sharpen our fundamental
understanding of the effect of various material parameters on hardness, or conversely, our ability to
extricate material parameters from hardness tests. In addition, the authors, along with previous
investigators (refs 1-4), project the future use of hardness tests to measure or correct for surface residual
stresses in materials. We present a model to evaluate the effect of residual stress on the measured
hardness. This model is subsequently used to fit our experimental data, and a final relationship is
obtained. In particular, our model found the Rockwell C (Rc) hardness as a function of the radial (ar,)
and hoop (ca) residual stresses and the yield strength (Y). A fitting parameter (a) was introduced to scale
the effect of the direction of the pressure between the ball and the specimen (p) with respect to the
residual stress.

We obtained the experimental data from steel specimens that contained a large range of well-
characterized residual stresses: over 50 percent of yield strength in compression and more than 30 percent
of yield strength in tension.

EXPERIMENTAL DETAILS

Right circular cylinders (Figure 1) were measured. These cylinders were hollow and symmetrical,
and they were cut out of steel tubes that were previously autofrettaged. This process provides a residual
stress that is compressive at the inside diameter (ID) and tensile at the outside diameter (OD). The flat
cylinder faces were ground smooth and parallel for ultrasonic measurements, which were performed first.
Three samples with different amounts of autofrettage were measured:

1. Sample G - the autofrettage process was extended up to 80 percent of its thickness.

2. Sample FC6355 - the autofrettage process was extended up to 40 percent of its thickness.

3. Sample 100 - the autofrettage process was extended up to 100 percent of its thickness.

The last two samples came from the same material and underwent the same heat treatment but were
subjected to different amounts of autofrettage (ref 5).

Shear ultrasonic waves with the polarization in the hoop direction and propagation in the axial
direction were used to obtain the residual stresses (refs 6,7). X-ray residual stress data had also been
taken on specimen G, which provided good agreement with the ultrasonic results.

The measured hoop residual stresses versus position for the three tubes are given in Figures 2, 3,
and 4. These figures also contain the analytically obtained radial stresses for these tubes (ref 8)
comparable to the autofrettage measured ultrasonically as described above. The corresponding Rc
readings are found in Figures 5, 6, and 7. In each case, these readings were taken in four Lines one-eighth
inch apart parallel to the radial direction in the tube and averaged for each radial position. Successive
points in each line were also at least one-eighth inch apart. The average value of hardness for each
position was used in our successive calculations.



THEORY AND BACKGROUND

In order to obtain the relationship between the measured hardness and the residual stress, Figure
8a depicts how the residual stress in our specimen affects the stress directly below a spherical indenter
(point A in Figure 8b). In this case, p is the normal stress (assuming zero friction) applied by the
spherical indenter to the specimen, and ar and aR are as defined previously. This depiction without
residual stresses is given by Shaw, Hoshi, and Henry (ref 9), and it is related to the situation in which the
load W is still applied, but the deformation has stopped. We use the stresses depicted in Figure 8a in the
von Mises-Hencky and the Tresca criteria for yielding to calculate the pressure p, which would cause
yielding. The Meyer hardness is a measurement of this pressure, which we then convert to R1 to compare
with our experimental data. We found, however, that the simplifying assumption in which the pressure p
and the residual stresses a.H and aR add up, as depicted in Figure 8b for the whole surface of the ball
indenter, overestimated the effect of the residual stress on our calculated hardness. Therefore, we
incorporated a fitting parameter a into our equations as the coefficient of the residual stress.

Hardness Concepts and Conversions

Conversions between various hardness numbers have to be used carefully. We used conversions
between three hardness numbers applicable for steels in our hardness range. These are discussed briefly
below:

1. The Rockwell C hardness, Ro is determined as a diamond indenter in the shape of a right
circular cone with a 120-degree tip angle, and a 0.2-mm tip radius is pushed at right
angles into a smooth steel surface. Initially, a 10-Kg weight and subsequently, a 140-Kg
weight are added and then removed. The depth of indentation h (umm) after the release
of the 140-Kg weight is measured, and Rc is obtained as follows:

Rc = 100 -
(1)

0.002

2. The Brinell test is conducted by loading a steel ball with a 10-mm diameter (D, see Figure
8b) to indent the specimen. The Brinell Harness Number (BHN) is the ratio of the load
W on the ball to the curved area of the indentation:

BHN = 2 W q (KgVmm 2)

-~2[ - 1 -(-D) ]

3. The Meyer Hardness number (MHN) is also obtained by indenting a surface with a steel
ball, but here the load is divided by the projected area of the indentation 7rnd2'4 on the
plane of the specimen surface. This quantity represents the average pressure p, between
indenter and specimen, which Meyer proposed as the measure of hardness:

MHN = 4 W = p (KVmm 2) (3)

where d is the diameter of the projection. From geometrical considerations, a relationship between the
Meyer and the Brinell hardness can be obtained:



MHN =1 1(' 2 1 _ (4)BHN 4 D) BHN

The ratio d/D can also be expressed in terms of the BHN:

(d)2 4W.(1 W;0 H2 (5)
D I D 2 B • DO2 BHN2

In a hardness test where the depth of penetration h is kept constant, the load W is directly
proportional to p. If, on the other hand, W is kept constant, h is proportional to l/p, so that h decreases
with increasing hardness. In the Rockwell test, the value of h is not recorded, only the quantity Ro, as
defined in Eq. (1). The relationship between R, and the BHN for our hardness range for steel is given
empirically (ref 10)

C2  (6)
Rc cBHN

where c1 = 77.1 and c2 = 13927 (Kg/mmý).

Using Eqs. (4), (5), and (6), it is possible to define a relationship between Rc and the mean
pressure p

b, .Ri + (b. p - b ) . Rc + 0 - p =O (7)

where the coefficients b,, i= 1...5 are known.

Analysis

Our analysis for the evaluation of the mean pressure p under a spherical indenter for a proper
hardness test is based on Figure 8a, as discussed above. In a proper hardness test, the applied load is
appropriate to the size of the indenter and to the hardness of the material.

We show here that if residual stresses are present in the plane of the specimen to which the
spherical indenter is applied, the pressure p at which plastic deformation starts is changed. The effect of
residual stresses on hardness is maximum when plastic deformation starts and the stresses are
perpendicular to the pressure induced by the indenter (point A in Figure 8b). This means that as the
indenter penetrates further into the specimen, the influence of the residual stresses decreases. We are
interested in the average pressure p under the bail and in the average residual stresses a, and a•. In our
calculations, the coefficient a was introduced such that

(a) = a "0 (8)

In the following equations, the average brackets are neglected.

Intuitively, one could surmise that if such stresses were present, then in general, the indentation
forces would increase or decrease if the stresses were compressive or tensile, respectively. However, this is
not true for indentation loads which only cause elastic strains, from the theory of superposition in the
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elastic region. The load to geuerate a certain elastic strain is not affected by stresses in the plane of the
specimen. For the plastic region, this is not true, as we shall see.

The problem of deducing mathematical relations to predict the conditions at which plastic
deformations begin for stresses in two or three dimensions is a very important consideration in the field of
plasticity. The yielding criteria are essentially empirical relationships for predicting the condition at which
the material will undergo plastic deformation under a particular combination of stresses. Two yielding
criteria are used:

1. The von Mises-Hencky criterion. Yielding occurs at any point in the body when the
distortion energy per unit volume for a state of combined stress equals that associated
with yitding in a simple tension test (2 Y2). For principal stresses, as given in Figure 8a,
the criterion can be expressed as follows:

(CIH - CYR?2 + (_1P + CYR + P) 2÷ (-P + 2 P - CFH) 2= 2Y2 (9)
3 3

Solving for p, we denote the pressure as pv.m for the von Mises-Hencky criterion

Pv- - (OH + ÷R%) + 3 y2 _ 1)- (10)

2 4 4

2. The Tresca criterion. This assumes that yielding occurs when the maximum shear stress
ir -aches the value Y/2. This can be expressed as

S(ol - 03) y (11)
;mx- 2 -2

where a, and oa represent the most tensile and most compressive of the three principal
stresses, respectively.

The maximum shear-stress criterion of Tresca is less complicated mathematically than the
von Mises-Hencky criterion, and for this reason, it is often used in engineering design.
However, in our case, in order to achieve a correlation between the experimental hardness
and residual stress data, we had to neglect the effect of radial stress a,. In the case in
which oa is algebraically larger than a., this assumption is not valid, and results from this
analysis are not correct within the Tresca framework. In using the Tresca criterion, we
should write

T = -2p + max (OHOR) + Pj (12)3

Since we neglected the presence of radial stress in the calculations involving the Tresca
criterion, the following relationship was used for the pressure dencted as PPTr
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PP-T = 3"(Y - oH) (13)

where the subscript P-T stands for Pseudo-Tresca, since this is an approximation of the
Tresca yielding criterion.

Equations (10) and (13) represent the model's predicted pressure at which deformation takes
place at point A in Figure 8b just below the indenter. Here the pressure p and the residual stresses are
perpendicular, but this is not the same across the whole surface of the indentation. For this reason, the
parameter a was introduced in Eq. (8), and the average stresses are substituted in Eqs. (10) and (13).

FIT OF EXPERIMENTAL DATA

Equations (10) and (13) describe the relationship between the average pressure, the yield strength,
and the residual stress of the material. These relationships were incorporated into Eq. (7) to obtain the
model's final expression for the predicted Rc. The only unknowns in the final expression of Rc are the
yield strength and the coefficient a. The principal effect of the yield strength is to modify the value of the
zero residual stress hardness Ro,, while a represents the effect of the non-perpendicularity of the residual
stresses to the pressure p applied by the indenter.

The general linear least squares algorithm was used to fit the set of hardness data points to the
model proposed above. For this purpose, the merit function XZ was defined as follows:

N (Rx(Xi)- RC[XI; Y, )2 (14)X2 (y, (Z) =E_(4

where Rx(x,) is Rc experimentally measured at position x, R, is the predicted value, and ao is the standard
deviation of the experimental data.

The purpose of our procedure was to evaluate yield strength and coefficient a, which minimize the
function x2. The Downhill Simplex Method was utilized (ref 11). The method requires only function
evaluations, therefore, it is not efficient in terms of the number of iterations required. However, it does
have the advantage of not having to evaluate the derivatives.

Resu'ltb for the fitted parameters are given in Table 1, where Rco is obtained from Eq. (7).

Table 1. Summary of Results For Two Yield Criteria
Y and a are variable

Sample Method a Y (Kbar) Rco Xz

100% V-M 0.160 12.10 38.5 0.016

FC6355 V-M 0.180 12.14 38.6 0.014

G V-M 0.210 12.94 41.1 0.044

100% P-T 0.083 12.16 38.7 0.016

FC6355 P-T 0.090 12.16 38.7 0.022

G P-T 0.107 13.02 41.3 0.099

~ -



A rule of thumb for estimating the "goodness" of fit is to compare the value of Z' for different fits.
It is clear that the von Mises-Hencky criterion is a better fit to the experimental data than the Pseudo-
Tresca criterion, especially in the case of sample G. In this fit, the parameter a decreases as the yield
strength of the material decreases. This was expected in terms of our understanding of the phenomenon.
As previously stated, the effect of residual stress diminishes as the indenter penetrates more into the
material, and the plastic deformation region increases in size. The fact that the coefficient a for the von
Mises' case is twice that for the Pseudo-Tresca case, can be understood by the nature of the two different
yielding criteria. In simplifying the von Mises expression, a factor of one-half multiplies the residual stress.

To make this model useful for characterizing residual stresses using hardness measurements, we
considered the case where a is constant. Hence, the model could be used at least in the range of Y, which
appeared in our specimen. A second fit was performed using a fixed value for a. For von Mises, we
assumed a = 0.18 and for Pseudo-Tresca, we assumed a = 0.09. The results are given in Table 2.

Table 2. Summary of Results For Two Yield Criteria
Y is variable, a is fixed

Sample Method a Y (Kbar) Rco _

100% V-M 0.18 12.14 38.6 0.020

FC6355 V-M 0.18 12.14 38.6 0.014

G V-M 0.18 12.95 41.1 0.082

100% P-T 0.09 12.16 38.7 0.019

FC6355 P-T 0.09 12.16 38.7 0.022

G P-T 0.09 13.02 41.0 0.149

The fitted values of the hardness versus the residual hoop stress are plotted in Figures 9, 10, and
11. Also plotted in Figure 9 is the result of the fit obtained using the complete Tresca criterion. The
agreement is clear in the tension region of the hoop stress (a. > aR), but in the region (a,, < aR), the
agreement is poor.

In the casc of sample G, the residual stresses present are higher and reach a value comparable to
more than one-half of the yield strength of the material at the ID. The related hardness does not increase
linearly in this range of values. This explains the better fit obtained by the von Mises-Hencky model in
the case of sample G. This sample is also slightly harder than the others, resulting in a higher value of
RcO.

The model satisfactorily represents the relationship between measured values of residual stress
and hardness. The larger disagreement between experimental and calculated data occurs around the point
where the elastic-plastic transition due to autofrettage occurs. In the case of measured stress data, the
transition is very sharp, and this point can be accurately measured. In the case of hardness data, this
transition is muted, as if an average measurement were performed. As a result, the measurement in this
region is not precise. As we go away from this point, the fit is very good, as shown in sample FC6355.
Again, for sample G, we were not able to improve the fit. Results of the fit are shown in Figures 12, 13,
and 14, where the experimentally measured hardness versus position is plotted together with the calculated
values obtained using both the Pseudo-Tresca and von Mises-Hencky criteria. The parameters used in this
case are shown in Table 2. The fit can be considered "good" in the regions distant from the plastic-elastic
transition due to autofrettage, but they are not consistent near the transition point.
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The relationship between Rc and hoop residual stress is depicted in Figure 15 for all three
specimens. It shows the consistency of the measurements and the model. The data and model from the
two rings manufactured from the same material and with the same heat trea:ment fall right on top of each
other. The Rco and yield strength resulting from the two are the same. The parameter a reflecting the
average effect of the residual stress on yielding is somewhat different, but the model does not require
them to be the same. The curve in this figure for the third ring, G, is also parallel to the data from the
first two rings, but reflects a different Rco. Indeed G, manufactured years earlier, does have a higher
hardness than the other two rings. In this case, the similarity of the FC6355 and 100 percent fits can be
used to refute the possibility that there is a relationship between the amount of plastic strain and hardness
that one may find for annealed or mild steels. These two rings had different amounts of autofrettage and
conscquently, different amounts of plastic strain. In spite of that, our model using the von Mises-Hencky
yielding criterion, including only residual stress effects, consistently fits the data. This data does not show
any greater deviation from the model in the regions that were heavily plastically deformed.

To further investigate the possibility that plastic deformation caused systematic changes in the
hardness, we cut a one-inch pie-shaped wedge from a ring adjacent to specimen FC6355 to release the
stresses caused by the autofrettage. We then measured the R, as a function of radial position in the
wedge, as previously done in the ring. We found that the hardness within one-eighth inch of the cut was
constant and had the expected value at zero stress for FC6355 equal to Rco in Table 1. As we measured
the hardness further away from the cut surface, we did not find constant Rc, but that the hardness
fluctuated with position along the radius and differed from the hardness values shown in the uncut ring or
near the edge. We conclude that for the pie-shaped specimen, there is a greater tendency for the
microstresses associated with the intergranular stresses to relax nearest the cut, very close to the edge of
the specimen. Further into the body of the specimen, these stresses between grains persist, corrupting the
hardness measurements, even though the long range stresses are relaxed. It is plausible that one
component of the dependence of hardness values on strain history or amount of strain hardening of the
material is due to the plastic deformation associated with the straining that leaves intragranular stresses in
the material. For the specimens FC6355 and 100 percent, although these intragranular stresses can add
scatter to the Rc. they would not affect them systematically. For specimen G, the difference between the
model and the experimental data is the greatest, approximately one in the R, scale, near the O.D., i.e., on
the tension side of the residual stress. This also causes a little tail for the calibration curve shown in
Figure 15. This could be attributed to the possibility of high axial stresses in specimen G, which is the
thickest of all the specimens, and may have distorted the hoop stress distribution in the cylinder. The axial
stresses result from autofrettage by an oversized mandrel pushed through the tube. As the plastic
deformation proceeds by this method, axial stresses are also introduced; these stresses exist in the tube and
are relieved more in thinner rings when the tube is cut than in thicker rings. Unlike the other two,
specimen G may also be subject to the effect that different amounts of plastic strain can cause strain
hardening and therefore affect the Rc hardness in addition to the amount of residual stress.

CONCLUSIONS

A model was presented to evaluate the effect of residual stress on the measured Rockwell C
hardness. The model satisfactorily fits experimental hardness versus residual stress data obtained for three
tubes with different percentages of autofrettage over a hardness range Rc 37 to 43 for the three rings.
The calibration and fit for the three specimens is consistent. The model gives the same yield strength (175
Ksi) for two specimens of the same material but different amounts of autofrettage. The von Mises-Hencky
yield criterion seems to provide a better fit to the data than the Tresca criterion.

The results of this model, namely the necessity for introducing a fitting parameter a as explained
in the text, are corroborated by the results of Blain (ref 2) who used a ball indentation test in steel only to
the very onset of plastic deformation to detect surface residual stress. He found a much larger change in
the load required to produce the onset of plastic deformation as a function of compressive or tensile
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surface residual stress than in Rc for the same range of residual stress. This leads us to further investigate
the possibility of a more efficient test for surface residual stresses that can be understood within this
model. Even at this time, this model and this set of experiments with proper calibration for a given type of
steel can be used as a basis for the measurement of surface residual stress in steels.
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Acoustic Transducer

Figure 1. Schematic representation of the gun slice and testing setup used in the experiments.
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The stresses in point A of Figure 8b are represented in Figure 8a.
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